skip to main content


Search for: All records

Creators/Authors contains: "Sahai, Amit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. null (Ed.)
    Indistinguishability obfuscation, introduced by [Barak et. al. Crypto2001], aims to compile programs into unintelligible ones while preserving functionality. It is a fascinating and powerful object that has been shown to enable a host of new cryptographic goals and beyond. However, constructions of indistinguishability obfuscation have remained elusive, with all other proposals relying on heuristics or newly conjectured hardness assumptions. In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove: Informal Theorem: Let 𝜏∈ (0,∞), π›Ώβˆˆ (0,1), πœ–βˆˆ (0,1) be arbitrary constants. Assume sub-exponential security of the following assumptions: - the Learning With Errors (LWE) assumption with subexponential modulus-to-noise ratio 2^{π‘˜^πœ–} and noises of magnitude polynomial in π‘˜,where π‘˜ is the dimension of the LWE secret, - the Learning Parity with Noise (LPN) assumption over general prime fields Z𝑝 with polynomially many LPN samples and error rate 1/β„“^𝛿 ,where β„“ is the dimension of the LPN secret, - the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch 𝑛^{1+𝜏}, where 𝑛 is the length of the PRG seed, - the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order. Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists. Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion resistant public-key functional encryption for all polynomial-size circuits. 
    more » « less
  4. null (Ed.)
    In this work, we study the question of what set of simple-to-state assumptions suffice for constructing functional encryption and indistinguishability obfuscation (IO), supporting all functions describable by polynomial-size circuits. Our work improves over the state-of-the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple dimensions. New Assumption: Previous to our work, all constructions of IO from simple assumptions required novel pseudorandomness generators involving LWE samples and constant-degree polynomials over the integers, evaluated on the error of the LWE samples. In contrast, Boolean pseudorandom generators (PRGs) computable by constant-degree polynomials have been extensively studied since the work of Goldreich (2000). (Goldreich and follow-up works study Boolean pseudorandom generators with constant-locality, which can be computed by constant-degree polynomials.) We show how to replace the novel pseudorandom objects over the integers used in previous works, with appropriate Boolean pseudorandom generators with sufficient stretch, when combined with LWE with binary error over suitable parameters. Both binary error LWE and constant degree Goldreich PRGs have been a subject of extensive cryptanalysis since much before our work and thus we back the plausibility of our assumption with security against algorithms studied in context of cryptanalysis of these objects. New Techniques: we introduce a number of new techniques: – We show how to build partially-hiding public-key functional encryption, supporting degree-2 functions in the secret part of the message, and arithmetic NC1 functions over the public part of the message, assuming only standard assumptions over asymmetric pairing groups. – We construct single-ciphertext secret-key functional encryption for all circuits with linear key generation, assuming only the LWE assumption. Simplification: Unlike prior works, our new techniques furthermore let us construct public-key functional encryption for polynomial-sized circuits directly (without invoking any bootstrapping theorem, nor transformation from secret-key to public key FE), and based only on the polynomial hardness of underlying assumptions. The functional encryption scheme satisfies a strong notion of efficiency where the size of the ciphertext grows only sublinearly in the output size of the circuit and not its size. Finally, assuming that the underlying assumptions are subexponentially hard, we can bootstrap this construction to achieve iO. 
    more » « less
  5. Pass, Rafael ; Pietrzak, Krzysztof (Ed.)
    We initiate a study of pseudorandom encodings: efficiently computable and decodable encoding functions that map messages from a given distribution to a random-looking distribution. For instance, every distribution that can be perfectly and efficiently compressed admits such a pseudorandom encoding. Pseudorandom encodings are motivated by a variety of cryptographic applications, including password-authenticated key exchange, β€œhoney encryption” and steganography. The main question we ask is whether every efficiently samplable distribution admits a pseudorandom encoding. Under different cryptographic assumptions, we obtain positive and negative answers for different flavors of pseudorandom encodings, and relate this question to problems in other areas of cryptography. In particular, by establishing a two-way relation between pseudorandom encoding schemes and efficient invertible sampling algorithms, we reveal a connection between adaptively secure multiparty computation for randomized functionalities and questions in the domain of steganography. 
    more » « less
  6. In this work, we study the fascinating notion of output-compressing randomized encodings for Turing Machines, in a shared randomness model. In this model, the encoder and decoder have access to a shared random string, and the efficiency requirement is, the size of the encoding must be independent of the running time and output length of the Turing Machine on the given input, while the length of the shared random string is allowed to grow with the length of the output. We show how to construct output-compressing randomized encodings for Turing machines in the shared randomness model, assuming iO for circuits and any assumption in the set {LWE, DDH, Nπ‘‘β„Ž Residuosity}. We then show interesting implications of the above result to basic feasibility questions in the areas of secure multiparty computation (MPC) and indistinguishability obfuscation (iO): 1.Compact MPC for Turing Machines in the Random Oracle Model. In the context of MPC, we consider the following basic feasibility question: does there exist a malicious-secure MPC protocol for Turing Machines whose communication complexity is independent of the running time and output length of the Turing Machine when executed on the combined inputs of all parties? We call such a protocol as a compact MPC protocol. HubΓ‘cek and Wichs [HW15] showed via an incompressibility argument, that, even for the restricted setting of circuits, it is impossible to construct a malicious secure two party computation protocol in the plain model where the communication complexity is independent of the output length. In this work, we show how to evade this impossibility by compiling any (non-compact) MPC protocol in the plain model to a compact MPC protocol for Turing Machines in the Random Oracle Model, assuming output-compressing randomized encodings in the shared randomness model. 2. Succinct iO for Turing Machines in the Shared Randomness Model. In all existing constructions of iO for Turing Machines, the size of the obfuscated program grows with a bound on the input length. In this work, we show how to construct an iO scheme for Turing Machines in the shared randomness model where the size of the obfuscated program is independent of a bound on the input length, assuming iO for circuits and any assumption in the set {LWE, DDH, Nπ‘‘β„Ž Residuosity}. 
    more » « less